Multivariate dependence modeling using copulas

نویسندگان

  • Marta Cardin
  • Maddalena Manzi
  • Cécile Amblard
  • Stéphane Girard
  • Matthias Fischer
  • Ingo Klein
  • Roger B. Nelsen
چکیده

In this contribution we review models for construction of higher dimensional dependence that have arisen recent years. In particular we focus on specific generalized Farlie Gumbel (or Sarmanov) copulas which are generated by a single function (so-called generator or generator function) defined on the unit interval. An alternative approach to generalize the FGM family of copulas is to consider the semi-parametric family of symmetric copulas. This family is generated by an univariate function, determining the symmetry (radial symmetry, joint symmetry) and dependence property (quadrant dependence, total positivity) of copulas. A multivariate data set, which exhibit complex patterns of dependence, particularly in the tails, can be modeled using a cascade of lower-dimensional copulas. Moreover, there exist necessary and sufficient conditions on the generating functions of the FGM family, in order to obtain various dependence properties. So we present multivariate generalizations of this class studying symmetry and dependence concepts, measuring the dependence among the components of each class and providing several examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling dependence between random variables using copulas

The concept of copulas is normaly used to model the dependence structure between two or more random variables. Random variables are transformed to the unit interval I = [0, 1] by using quasi-inverse transformation. As a result we get a normalised multivariate distribution function called the copula. Copulas uniquely determine the dependence structure of multiple random variables. The aim of the...

متن کامل

Mixture of D-vine copulas for modeling dependence

The identification of an appropriate multivariate copula for capturing the dependence structure in multivariate data is not straightforward. The reason is because standard multivariate copulas (such as the multivariate Gaussian, Student-t, and exchangeable Archimedean copulas) lack flexibility to model dependence and have other limitations, such as parameter restrictions. To overcome these prob...

متن کامل

Statistical Models and Methods for Dependence in Insurance Data

Abstract Copulas are becoming a quite flexible tool in modeling dependence among the components of a multivariate vector. In order to predict extreme losses in insurance and finance, extreme value copulas and tail copulas play a more important role than copulas. In this paper, we review some estimation and testing procedures for both, extreme value copulas and tail copulas, which received much ...

متن کامل

General Multivariate Dependence Using Associated Copulas

This paper studies the general multivariate dependence of a random vector using associated copulas. We extend definitions and results of positive dependence to the general dependence case. This includes associated tail dependence functions and associated tail dependence coefficients. We derive the relationships among associated copulas and study the associated copulas of the perfect dependence ...

متن کامل

Pair-copula constructions of multivariate copulas

The famous Sklar’s theorem (see [54]) allows to build multivariate distributions using a copula and marginal distributions. For the basic theory on copulas see the first chapter ([14]) or the books on copulas by Joe ([32]) and Nelson ([51]). Much emphasis has been put on the bivariate case and in [32] and [51] many examples of bivariate copula families are given. However the class of multivaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008